ECS 455: Quiz 3 Solution

Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group. Late submission will not be accepted.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	555

4. Do not panic.

$$
m=2
$$

Consider a system which has 2 channels. We would like to find the blocking probability via the Markov chain method. For each of the following models, draw the Markov chain via discrete time approximation. Don't ${ }_{-3}$ forget to indicate the transition probabilities on the arrows. Assume that the duration of each time slot is 1 millisecond. Then, use global balance equations to find (1) the steady-state probabilities and then (2) the long-term call blocking probability.

$$
\lambda=12 \text { calls } / \text { hour }
$$

1. Erlang B model: Assume that the total call request rate is 12 calls per hour and the average call duration is
$\frac{1}{\mu}=10$ mins.
$\lambda \delta=\frac{2}{12 \times 10^{-3}}=\frac{10^{-5}}{3} \approx 3.33 \times 10^{-6}$

$\mu \delta=\frac{1 \times 10^{-3} \mathrm{sec}=\frac{10^{-3}}{10 \mathrm{~min}}=\frac{10^{-5}}{6}}{10 \times 60}$
2
$A=\frac{\lambda}{\mu}=\frac{\pi 2}{64} \times 19=2$ Erlangs

$$
\begin{gathered}
P_{0}+P_{1}+P_{2}=1 \\
P_{0}+A P_{0}+\frac{1}{2} A^{2} P_{0}=1
\end{gathered}
$$

$$
p_{0}=\frac{1}{1+A+\frac{1}{2} A^{2}}=\frac{1}{5} \approx 0.2
$$

$$
P_{1}=\frac{\lambda}{\mu} p_{0}
$$

$$
P_{1}=\frac{2}{5}=0.4
$$

$$
=A P_{0}
$$

ns

$$
\begin{aligned}
P_{2} & =\frac{1}{2} \frac{\lambda}{m} P_{1}=\frac{1}{2} A P_{1} \quad P_{2}=\frac{1}{2} \times 2 \times \frac{1}{5}=\frac{2}{5} \\
& =\frac{1}{4} A^{2} P_{0} \quad P_{b}=P_{m}=P_{2}=\frac{2}{5}=2.4
\end{aligned}
$$

2. Engset model: Assume that there are 6 users. The call request rate for each user is 2 calls per hour and the average call duration is 10 ming. $=1$

Global balance equation

$$
p_{0}+p_{1}+p_{2}=1
$$

$P_{0}+6 A_{0} P_{0}+15 A_{u}^{2} P_{0}=1$

$$
\begin{array}{ll}
+P_{1}+P_{2}=1 & =15 A_{v}^{2} P_{0} \\
+6 A_{0} P_{0}+15 A_{u}^{2} P_{0}=1 & \text { Page } 1 \text { of } 1 \\
P_{0}=\frac{1}{1+6 A_{U}+15 A_{v}^{2}}=\frac{1}{1+6 \cdot \frac{1}{3}+25 \times \frac{1}{Y_{3}}}=\frac{14}{3}=\frac{3}{14} \approx=\frac{20}{18+30+20}=\frac{20}{68} \quad=\frac{5}{17} \approx 0.294
\end{array}
$$

ECS 455: Quiz 4 Solution

Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group. Late submission will not be accepted.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	555

4. Do not panic.

Consider a system which has 2 channels. We would like to find the blocking probability via the Markov chain method. For each of the following models, draw the Markov chain via discrete time approximation. Don't forget to indicate the transition probabilities on the arrows. Assume that the duration of each time slot is $1_{\delta=10^{-3}} \mathrm{sec}$ millisecond. Then, use global balance equations to find (1) the steady-state probabilities and then (2) the long-term call blocking probability.

1. Erlang B model: Assume that the total call request rate is 6 calls per hour and the average call duration is 30 ming.
$\lambda=6 \frac{\text { calls }}{\mathrm{hr}}=\frac{6}{60} \frac{\mathrm{calls}_{s}}{\mathrm{~min}}=\frac{6}{3600} \frac{\mathrm{calls}}{\mathrm{sec}}$
$\lambda r=\frac{6}{3600} \times 10^{-3}=\frac{1}{6} \times 10^{-5} \approx 1.67 \times 10^{-6}$
$\mu \delta=\frac{1}{30 \times 60} \times 10^{-3}=\frac{1}{18} \times 10^{-5} \approx 5.56 \times 10^{-7}$

$$
p_{0} \lambda \delta=p_{1} \mu \delta \quad p_{2}=\frac{A}{2} p_{1}=\frac{A^{2}}{2} \rho_{0}
$$

$A=\frac{\lambda}{\mu}=\lambda \times \frac{1}{\mu}=\frac{6}{60} \times 30=3$ Erlangs

$$
P_{1}=A P_{0}
$$

$p_{0}+p_{1}+p_{2}=0 \Rightarrow p_{0}=\frac{1}{1+A+\frac{A^{2}}{2}}=\frac{1}{1+3}+\frac{3^{2}}{2}=\frac{2}{17} \Rightarrow p_{1}=3 \times \frac{2}{17}=\frac{20.18}{17}, \quad p_{b}=p_{2}=\frac{3}{2} \times \frac{6}{17}=\frac{9}{17} \cdot$
2. Engset model: Assume that there are 3 users. The call request rate for each user is 2 calls per hour and the average call duration is 30 ming.
$\lambda_{u}=2 \frac{\text { calls }}{\mathrm{hr}} \leftarrow$ observe that this is $\frac{\lambda}{3}$
$\lambda_{v} \delta=\frac{\lambda}{3} \delta=\frac{1}{18} \times 10^{-5} \approx 5.56 \times 10^{-7}$
$\mu s=\frac{1}{18} \times 10^{-5} \approx 5.56 \times 10^{-7} \leftarrow$ same $Q 1$.

$A_{u}=\frac{\lambda_{u}}{\mu}=\frac{\lambda}{3 \mu}=\frac{A}{3}=\frac{3}{3}=1$ Erlang.

$$
P_{0} 3 \lambda_{0} \sigma=P_{1} \mu \delta
$$

$$
\begin{aligned}
P_{1} 2 \lambda_{0} 5 & =P_{2} 2 \mu^{5} \\
P_{2} & =A_{u} P_{1}=3 A_{u}^{2} P_{0}
\end{aligned}
$$

$$
p_{0}+p_{1}+p_{2}=1 \Rightarrow P_{0}=\frac{1}{1+3 A_{0}+3 A_{0}^{2}}=\frac{1}{7} \approx 0.143
$$

$$
P_{1}=3 A_{0} \rho_{0}
$$

$$
p_{1}=3 A_{0} p_{0}=3 p_{0}=\frac{3}{7} \approx 0.429
$$

$$
\rho_{2}=3 A_{0}^{2} \rho_{0}=3 \rho_{0}=\frac{3}{7} \approx 0.429
$$

$$
\begin{aligned}
P_{b} & =\frac{\frac{3}{7} \times \lambda_{0} 5}{\frac{1}{7} \times 3 \lambda_{0} 5+\frac{3}{7} \times 2 \lambda_{0} 5+\frac{3}{7} \times \lambda_{0}^{5}}=\frac{3}{3^{+6+3}} \\
& =\frac{1}{4} \approx \approx 0.25
\end{aligned}
$$

Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group. Late submission will not be accepted.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	

4. Do not panic.

Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials. Does either LFSR generate an m-sequence?

1. $x^{4}+x^{3}+x^{2}+x+1$

The corresponding LFSR does not generate m sequence because no single cycle visit all non-zero states.

Note that because the question days "complete" state diagrams, we need to show these two cycles as well.
2. $x^{4}+x^{3}+1$

The corresponding LFSR generates an m sequence because one single cycle visit all non-zero states.

ECS 455: Quiz 6 Solution

Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group. Late submission will not be accepted.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID

4. Do not panic.

A 64×64 Hadamard matrix is created in MATLAB via the command

$$
H=\text { hadamard (64). }
$$

Note that the elements of H are all 1 or -1 . Of course, there are 4,096 elements in H . Writing them all down would take too much time. So, in this question, you are asked to identify only parts a and b that are shown in the following picture:
$H_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
$\left.H_{4}=H_{2} \otimes H_{2}=\left[\begin{array}{cccc}1 & -1\end{array}\right] \begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 1\end{array}\right]$
$H_{64}=H_{16} \otimes H_{4}$

Remark: The picture is not drawn to scale.
a. (4 pt) Find $\mathrm{H}(1: 4,1: 4)$. (This is the part of H that is denoted by (a) in the picture above. It covers rows 1 to 4 and columns 1 to 4 .)

$$
[a]=\underbrace{H_{16}(1,1)}_{1} \times H_{4}=H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

b. (2 pt) Find H (61:64,61:64).

$$
[b]=\underbrace{H_{16}(16,16)}_{1} \times H_{4}=H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

